MEASUREMENT TYPES AND THEIR DATA

ALL THE INSTRUMENTS...

TWO CLASSES OF MEASUREMENTS

Direct Methods

 Taken in place, instruments in direct contact with atmospheric property you are trying to measure

Indirect Methods

- Atmospheric properties measured from a distance (i.e., no direct contact).
- Also referred to as <u>remote</u> <u>sensing</u>.

INDIRECT MEASUREMENTS

- Two forms:
 - Active sensors <u>transmit</u> and receive energy
 - <u>Passive</u> sensors just receive energy

REMOTE SENSING OF WIND: THREE "-DARS"

- Radar (Radio Detection and Ranging)
 - Microwave pulse bounces off rain drops / larger dust particles.
 - Good for looking at rain, storm structure, and "radial velocity"
 - What you see on TV.
- Sodar (Sound Detection and Ranging)
 - Sound pulses used like sonar.
 - Good for wind speed / direction changes with height (profile)
 - Used frequently in wind energy
- Lidar (Light Detection and Ranging)
 - Laser bounces off of aerosols and smaller dust particles in the atmosphere.
 - Frequently used in wind energy for wind profiles
 - Typically lose signal with rain.

RADAR

Used to track and measure precipitation.

Can also get information on storm relative winds. This
is useful for determining if a storm is severe or
capable of producing a tornado.

• Ground – based. Each radar can only "see" 100 – 200 miles out.

Examples

RADAR BASICS

- <u>Electromagnetic</u> energy transmitted into atmosphere
- Backscattered energy ("radar echo") measured by radar and displayed
- The <u>larger</u> the object, the more <u>energy</u> that is returned.

 Sources of backscattering: <u>raindrops</u>, hail, snow, <u>bugs</u>, dust, ground targets, debris

WSR-88D DOPPLER RADAR

•We can see:

- Reflectivity the energy "sent back" by the hydrometers (or debris) in a storm
- Radial velocity The RADIAL motion of the raindrops.

WSR-88D NETWORK

WSR-88D DOPPLER RADAR

•We can see:

- Reflectivity the raindrops in a storm
- Radial velocity The RADIAL motion of the raindrops.

•We can't see:

- •The actual wind speed/dir.
- •Close to the ground
- Tornadoes
- •Or can we....?

3 MARCH 2019 BEAUREGARD, AL TORNADO DEBRIS SIGNATURE

EXAMPLES: BIRDS / BATS

EXAMPLES: BIRDS / BATS

EXAMPLE: SMOKE PLUMES

EXAMPLES: DUST

RESEARCH RADARS

Doppler on Wheels (DOW) – Center for Severe Weather Research

University of Massachusetts Tornado Radar

Shared Mobile Atmospheric Research and Teaching Radar (SMART-R)

TTU Ka Band Doppler radar

31 MARCH 2016 XPIA DATASET

Dual-Doppler Horizontal Wind Speed (m s⁻¹) at 80 m AGL 6 JUN 2012--15:36:17

TTUKA TORNADO RADAR DATA 15 APRIL 2012: REFLECTIVITY

TTUKA TORNADO RADAR DATA 15 APRIL 2012: RADIAL VELOCITY

3 MAY 1999 OKC TORNADO FROM UMASS RADAR DATA

Reflectivity

Velocity

LIDAR BENEFITS

- Low-level radar data can be messy...even in the Plains.
- Vertical velocity only possible with a third radar or integration of continuity equation.
- Clear-air data tough to acquire even for "sensitive" systems.

- Pulsed lidar
 - WindCube
 - Uses a modified Doppler Beam Swinging (DBS) technique
 - 5 beams emitted simultaneously.
 - Lowest level is 40 m
 - ~ 30 m range gate spacing; ~ 4 secs for full profile

- Continuous Wave:
 - Prism performs a complete 360 for each level.
 - The VAD technique is used to get a wind speed / direction for a given level.
 - Variable range gates; ~15 sec scans.
 - Allows for data collection as low as 10 m.
 - Requires surface measurement for initial WD guess.

PROFILING LIDAR

ZyphIR 300 Profiling Lidar

- 10 heights between 29 m and 143 m.
- WS, WD and Vertical Velocity within each height bin.
- Rigorous testing has classified these units as "bankable".

(a) Pulsed DBS lidar

(b) Continuous Wave VAD lidar

Scanning Wind lidar

Scanning Wind lidar

- Nacelle Mounted Lidars
 - "look ahead"
 - Mostly used for turbine control and wake ID

LIDAR DATA CASE STUDY

Analyzed several "pulse" thunderstorm types from July 2017

LIDAR CASE STUDY

MEASUREMENT COMPARISONS

- New techniques should be verified with proven methods.
- "Proven" methods for measuring wind generally include some type of anemometer.

LIDAR CASE STUDY

- Compare to lidar data to anemometers data.
- 2 NRG 40C cup anemometers (scalar wind speed)
 - 28 m AGL
- 2 NRG wind vanes
 - 25 m AGL
- CSATB Sonic
 - 30 m AGL
 - U,V, and W
- 10 min. Statistics

RESULTS

• "Volume" averaging smooths smaller scales of turbulence in both radar and lidar data.

 ZyphIR Lidar performed well in moderate to heavy precipitation.

 Hydrometer fall-speeds likely influenced vertical velocity estimation in lidar data.

