SESSION 3: FORCE BALANCES / WINDS

ATMOSPHERIC FORCE BALANCES

 First, MUST have a <u>pressure gradient force</u> (PGF) for the wind to blow.

- Otherwise, all other forces are irrelevant because they depend on wind having a <u>velocity</u> (or speed).
- Some balances we will examine:
 - Hydrostatic
 - Geostrophic Balance
 - Gradient Balance
 - Cyclostrophic Balance
 - Guldberg-Mohn

HYDROSTATIC BALANCE

 Recall the <u>vertical</u> pressure gradient force.

• Why doesn't the air get sucked up into outer space?

HYDROSTATIC BALANCE

 Answer...<u>GRAVITY</u>!! The gravitational force BALANCES the vertical pressure gradient force:

THE HYDROSTATIC EQUATION

 Vertical PGF and gravity are roughly equal in magnitude, but opposite in direction. Thus, they act to keep the vertical velocities minima (not zero!).

$$\frac{\partial p}{\partial z} = -\rho g$$

 There MUST be vertical motion to get precipitation and clouds.

THE HYDROSTATIC EQUATION

- Most global NWP models (like the GFS) are hydrostatic.
- They don't solve for vertical momentum (velocity) explicitly.
- Two additional methods to get vertical motions:
 - Kinematic method (Continuity Equation)
 - Thermodynamic method (Based on first law)

GEOSTROPHIC BALANCE

Balance between the pressure gradient force and the <u>Coriolis</u> force:

This balance describes the geostrophic wind

© 2016 Pearson Education, Inc.

GEOSTROPHIC WIND

 Winds in <u>upper atmosphere</u> are largely geostrophic.

- Therefore, wind blows <u>parallel</u> to isobars (or isoheights), which is useful to consider when looking at weather maps.
- If low pressure is always to the left of motion, this means:
 - Wind must move <u>counterclockwise</u> around <u>low</u> pressure areas
 - Wind must move <u>clockwise</u> around <u>high</u> pressure.

GEOSTROPHIC WIND

TEMPERATURE AND WIND

Fig. 1.5

- The strength of the geostrophic wind will be proportional to the gradient (slope) in temperature.
- Thus, geostrophic winds increase with height up to the 300 mb level.
- Cold air on left.

100 mb COLD **WARM** 150 mb COLD 200 mb COLD WARM 300 mb Level of maximum wind WARM WARM 500 mb WARM height COLD 700 mb COLD WARM COLD 1000 mb South **North**

THERMAL WIND

 This increase in geostrophic wind with height is known as the thermal wind.

• Geostrophic wind shear:

$$\overrightarrow{V_T} = \overrightarrow{V_g}_{upper} - \overrightarrow{V_g}_{lower}$$

 Vertical shear of geostrophic wind (thermal wind) directly related to horizontal (virtual) temperature gradient

THERMAL WIND

 The thermal wind assumes hydrostatic and geostrophic balance.

• This relationship explains the general west – east motion of mid-latitude weather and the jet stream.

Example

GRADIENT BALANCE

 TECHNICALLY, geostrophic balance only applies to flows with no curvature.

 If there is curvature, then the centrifugal force should be included.

 The result is the gradient wind -- > flows along gradients (isobars / isoheights).

• In reality, CF contributes only a little. Not really worth the trouble to include.

GRADIENT WINDS

- Used in wind engineering to represent winds above the boundary layer
 - Gradient height, for example.

 The winds around a hurricane are also typically modeled as gradient winds / flow.

Coriolis still important here.

GULDBERG-MOHN BALANCE

Friction slows the wind

Coriolis force (dependent on wind speed) is therefore reduced

Pressure gradient force now exceeds Coriolis force

Wind flows across the isobars toward <u>lower</u> pressure

ANOTHER PERSPECTIVE...

SURFACE WINDS AND PGF

SURFACE WINDS VS. UPPER AIR

SURFACE WINDS AND VERTICAL MOTION

- Horizontal movement of air can result in convergence or divergence.
 - Convergence = winds coming together; colliding
 - <u>Divergence</u> = winds separating
- Areas of convergence are areas of <u>rising</u> air
- Areas of divergence are areas of sinking air

 Rising air (upward vertical motion) is needed to form clouds and precipitation.

CONVERGENCE

 Convergence associated with areas of <u>low</u> pressure at the surface. Therefore areas of low pressure are associated with <u>rising</u> air.

Surface winds blow counterclockwise around a cyclone (low pressure) and converge.

DIVERGENCE

 <u>Divergence</u> is associated with areas of <u>high</u> pressure at the surface. Therefore areas of high pressure are associated with <u>sinking</u> air.

Surface winds blow clockwise around an anticyclone (high pressure) and diverge.

SURFACE AND VERTICAL PROFILE

 The consideration of both friction (surface) and gradient winds leads to the standard wind profile above the surface.

Typically modeled as logarithmic profile (or a

power law)

EQUATIONS OF MOTION

 Separate into equations for horizontal and vertical momentum as well as zonal and meridional components:

$$\frac{du}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv + F_x$$

$$\frac{dv}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial y} - fu + F_y$$
Coriolis
Friction

In vector form:

$$\frac{d\vec{V}}{dt} = -\frac{1}{\rho} \nabla_h p - f \hat{k} \times \vec{V} + \vec{F}_r$$

Also called the Navier-Stokes of Motion

EQUATIONS OF MOTION

• Expanding the total derivative:

$$\frac{\partial \vec{V}}{\partial t} = -\vec{U} \cdot \nabla \vec{V} - \frac{1}{\rho} \nabla_h p - f \hat{k} \times \vec{V} + \vec{F}_r$$

- In words, the local time rate of change of the wind at a fixed location is due to:
 - Horizontal advection
 - The PGF
 - The Coriolis force projected into the vertical
 - The resultant friction (molecular stress term)
- But do all of these terms really matter? It depends.

